MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE CAMPOS.





  MECÃNICA GRACELI GERAL - QTDRC.





equação Graceli dimensional relativista  tensorial quântica de campos 

G* =  =

[  /  IFF ]   G* =   /  G  /     .  /

 G  = [DR] =            .+  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

[  /  IFF ]  = INTERAÇÕES DE FORÇAS FUNDAMENTAIS. =

TeoriaInteraçãomediadorMagnitude relativaComportamentoFaixa
CromodinâmicaForça nuclear forteGlúon10411/r71,4 × 10-15 m
EletrodinâmicaForça eletromagnéticaFóton10391/r2infinito
FlavordinâmicaForça nuclear fracaBósons W e Z10291/r5 até 1/r710-18 m
GeometrodinâmicaForça gravitacionalgráviton101/r2infinito

G* =  OPERADOR DE DIMENSÕES DE GRACELI.

DIMENSÕES DE GRACELI SÃO TODA FORMA DE TENSORES, ESTRUTURAS, ENERGIAS, ACOPLAMENTOS, , INTERAÇÕES DE CAMPOS E ENERGIAS, DISTRIBUIÇÕES ELETRÔNICAS, ESTADOS FÍSICOS, ESTADOS QUÂNTICOS, ESTADOS FÍSICOS DE ENERGIAS DE GRACELI,  E OUTROS.

/

  / G* =  = [          ] ω           .

 MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE INTERAÇÕES DE CAMPOS. EM ;


MECÂNICA GRACELI REPRESENTADA POR TRANSFORMADA.



dd = dd [G] = DERIVADA DE DIMENSÕES DE GRACELI.






                                           - [  G*   /.    ] [  [

G { f [dd]}  ´[d] G*         / .  f [d]   G*                            dd [G]


O ESTADO QUÂNTICO DE GRACELI


                                           - [  G*   /.    ] [  []

G { f [dd]}  ´[d] G*         / .  f [d]   G*                            dd [G]




       - [  G*   /.    ] [ / [  


G { f [dd]}  ´[d] G*         / .  f [d]   G*                            dd [G]


O ESTADO QUÂNTICO DE GRACELI


                                           - [  G*   /.    ] [  [] [

]

G { f [dd]}  ´[d] G*         / .  f [d]   G*                            dd [G]



The Dirac equation in the form originally proposed by Dirac is:[7]: 291 [8]where ψ(xt) is the wave function for an electron of rest mass m with spacetime coordinates xt. The p1p2p3 are the components of the momentum, understood to be the momentum operator in the Schrödinger equation. Also, c is the speed of light, and ħ is the reduced Planck constant. These fundamental physical constants reflect special relativity and quantum mechanics, respectively.







       - [  G*   /.    ] [  [ / 

]

G { f [dd]}  ´[d] G*         / .  f [d]   G*                            dd [G]


O ESTADO QUÂNTICO DE GRACELI


                                           - [  G*   /.    ] [  [

G { f [dd]}  ´[d] G*         / .  f [d]   G*                            dd [G]





Making the Schrödinger equation relativistic[edit]

The Dirac equation is superficially similar to the Schrödinger equation for a massive free particle:

The left side represents the square of the momentum operator divided by twice the mass, which is the non-relativistic kinetic energy. Because relativity treats space and time as a whole, a relativistic generalization of this equation requires that space and time derivatives must enter symmetrically as they do in the Maxwell equations that govern the behavior of light — the equations must be differentially of the same order in space and time. In relativity, the momentum and the energies are the space and time parts of a spacetime vector, the four-momentum, and they are related by the relativistically invariant relation


Comments

Popular posts from this blog